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ABSTRACT

)

The purpose of this work was to develop and furnish to the Army (USAAVLABS)
a flexible-wing delivery system for all-weather airdrop of 500 pourds of
cargo with both automatic and command homing capabllity, These gystems are
for use in military engineering and service tests,

A detailed design analysis and trade-off was accomplished followed by a
full-scale wind-tunnel tes’; program and flight test evaluation effort, which
resulted in the selection of a twin-keel catenary parawing, airborne con-
trol bax, and suspension system. This final system was then tested for
reliability and landing accuracy,

This report presents the results and findings of the work accomplished.
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INTRODUCTION
“M'

The Department of the Ammy has an approved Qualitative Materia]l
Requirement (QR) for a simple, ged system for accurate airdrop of
Supplies and equipment s 300 to_500 pounds, in areas where terrain, weather
conditions, or tactical situation precludes the use of other means of
resupply or techniques of airdrop,

Goodyear Aerospace Corporation (cac), Akron, Ohio, was awarded contract
DAAJ02-68~C-00L0 by U, g, Army Aviation Materie) Laboratories ( USAAVIABS),

The controlleq airdrop cargo system (CACS) (see Figure 1) as developed
consists of a flexible wing canopy, a radio control System, a groung
transmitter, and a bridle with swivel, The system is compatible with an
A-2] or any standarq single-point 500~pound cargo container with or with.
out a standarg ground releage mechanism,

This flexible wing system ig droppable from both fixed- ang rotary-wing
aircraft traveling at speeds of 0 to 150 knots IAS. The operational
altitude range is from 500 to 30,000 feet, and it is capable of maintain-
ing a range-to-altitude glide ratio (L/D) in excess of 1,9 in the automatic
mode and up to 2,7 in the manual mode,

8 desired target when being controlleq manually in winds of up to 75 per-
cent of the system's forwarqd velocity, The circular error probabili ty
(CEP) during automatic homing i35 180 feet with a 90-percent confidence
level,

NASA, Langley, Virginia, to detemmine correct Suspension line lengths anq
to obtain wing characteristics. -The results of the analysis ang wind-~
tunnel tests were verified by flight tests conducted at Yuma Proving Ground,
Yuma, Arizona, The Tflight test program was designeq to evaluate the

stress analysis, as well as the system antenna design, and to eytablish



capability, and clandestine delivery potentiél with pinpoint accuracy is
ready for Army use,

Table I summarizes the capability of the system and compares the resulcs
»with the initial goals of the program,
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S TABLE I, COMPARISON OF SYSTEM PERFORMANCE WITH REQUIREMENTS
Work Statement System
L/D | 1.8 1.9 to 2,1
(max, 3,1)
Descent Rate 25 '/sec 17 t/sec
Turn Radius 100! 100!
' Impact '
Manual _ . 100' radius 100! radius
Auto s ' - Average 169.6!
Maximum g . - 12
Reliability - 80% at 90% 93.3% at 90%
Deployment 500! to 30,000 500! to 2},000!
demonstrated
~
Velocity . 0 to 150 KIAS .0 to 150 KIAS
Reaction Time ’
Preﬂight ' 15 min 15 min
Turnaround Time 125 min LS min



STATEMENT OF THE PROBLEM

GENERAL

GAC, under Contract DAAJ02-68-C~00L0, was to design, develop, and test a
CACS having an all-weather capability. The system was to use a flexible
type of canopy, .

The system requirements as defined by the contract are presented in this

section, In addition to the technical requirements set forth, a quality
control program in accordance with MIL-Q-9856A was required.

DESIGN CHARACTERISTICS

The design characteristics as defined in the subject contract are:
1. Wing shall be an all-flexible type canopy,
2. Suspension shall consist of those required lines, fittings, and

straps which are used to connect or interrelate the wing and the
control platform and shall be dimensionally stable,

3. Control platform shall house the guidance and control systems and
any other system necessary for proper glider operation. The size

shall be as small as possible. It shall be shaped to minimi ze
aerodynamic drag, assist handling, and minimize hazards to the
wing during deployment.

L. Payload - Attachment of the payload shall be designed to minimize

CG variances. Automatic disconnect of the payload upon ground
contact shall be studied. No shape or size of the payload is

given, but standard airdrop-type containers shall be adaptable to

the system (normally A21, 422, and A7),

S. Radio Control - The system shall be designed for use with the

AN/ASN-9S radio. The equipment interfacing perfomance responsi~
bility will reside with GAC, including the imstallation of program

test recording capabilities in the test system to determine
whether malfunctions or performance deviations are the result of
GFE or cuntractor-developed hardware,

PERFORMANCE REQUIREMENTS

1. Payload range of 300 to 500 pounds with no rigging changes (100
to 500 pounds desired),

P .



3.
L.

5

Horizontal rang= to vertical height in still air 1.8 to 1 when
operating in the automatic homing mode on straight track toward
ground transmitter. Design objective shall be 2, to 1 for the
same conditions,

Deployable from 500 to 30,000 feet.

Releasable from any type of aircraft at velocities of 0 to 150
KIlas,

Capable of a radius turn of 100 feet in either direction,

Command control from a ground station to a landing within 100
feet of the desired point in winds up to 75 percent of the glider
forward airspeed.

Vertical rate of descent at impact of 25 fps or less.

Mission Duration - The airborne glider guidance and control sys-
tem shall automatically activate after full deployment and have
sufficient energy to insure L5 minutes of normal operation in
automatic homing mode,

PERFCRMANCE OBJECTIVES

1.

Demonstrate automatic homing to a ground-based transmitter in
winds up to 15 knots with 200-foot CEP or less to a confidence
level of 90 percent,

2. Conduct adequate technical analyses of the design in areas of
performance, stability and control, dynamics, loads, materials,
stress, and weights to insure compliance with the performance
requirements.,

3, Prepare a test plan for flight testing of the system to demon-
strate the ability of the system to meethhe performance
requirements and to identify its operational envelope,

OPERATIONAL REQUIREMENTS »
1, Reaction Time ~ Time from the moment the operator decices to

employ the equipment until the system makes final delivery of
supplies or equipment at its ultimate destination., Sequence of
employment from the moment a decision is made to employ the equip-
ment is:

e e o



Reaction Time (Min,)

Sequence of Employment Required Desired
Preflight check 10 LY
Attach system to cargo 15 2

¢+ Turnaround Time - Time reouired for the item to be rcturned to a
condition for reuse,

Reaction Time (Min,)

¥
Sequence of Employment Required Desired
Prepare for return to a using unit 10 5
Enroute NA NA
Inspection 25 10
Repacking 90 50

RELTABILITY AND ENVIRONMENTAL REQUIREMENTS

The flexible wing delivery system’s opsrational reliability requirements
urider worldwice environments, assuming successful completion of preflight
check, are:

1. Desired - 100 percent
2. Minimum required - 80 percent with 90 percent confidence

The equipment must be capable of employment in intermediate, hot-dry, warm-
wet, cold, and extreme cold clirmates, The minimum environmental operational
expressions required are specified in paragraph 7 of Change 1 to AR 705-15,
For minimum storage and transit conditions, the equipment will incorporate
the criteria specified in paragraph 7.1 of Change 1 to AR 705-15,

Sufficient testing of the equipment will be done to insure reliability,
Number of samples tested will be in accordance with engineering Judgment
based on state-of-the-art knowledge or practice consistent with accepted
statistical methods. MIL-R-275L42 will be used as a reference for fulfill-
ment of the reliability requirsments. Contractor reliability plans and
programs will fulfill the intent of MIL-R-275)2.

MAINTAINABTLITY REQUIREMENTS

Maintenance Concept - Operational readiness of' the
The equipment must be desipgned for minimum preventgve and in-storage
maintenance and for maximum interchangeability anfl use of standard parts
"and components., To satisfy this requirement, th away assemblies or
modular design will be used whenever cost per asgembly is under %25 each

ipment is immediate,
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or when value analysis for higher cost items dictates. Maximum accessi-
bility will be provided to high-mortality items that require adjustment or
removal, No encumbrances will be placed around the components requiring
field adjiustment or repair., All components shall be removable with tools
in the organizational mechanic's toolbox.

Quantification of Maintainability - The s stems maintainability goal is to

maintain a required combat readiness of 97 percent for expected utilization

on a 2h-hour-per-day operation. A comprehensive maintenance and skill

analysis will be conducted during the contractor test program., MIL-M-26512

will be used as a reference for fulfillment of the maintainability require-

ment, Contractoxj maintainability plans and programs will fulfill the ¢
intent of MIL-M-26512,

Test and Checkout - Visual inspection at the organization miintenance level
will be required to determine mechanical condition of the equipment. More
comprehensive inspections will be accomplished at the higher levels of
maintenance. Equipment will be calibrated and checked out with equipment
currently in Army Standard Instrumen*t and Electronic Repair Shops where
possible,

Maintenance Personnel - Maintenance persomel will require skill levels
similar to pzrachute riggers and electronics repairmmen, No increase in
maintenance personnel requirements is anticipated to operate and support
the flexible wing delivery systems.

Human engineering principles shall be considered to insure that adequate
consideration is giv-n to the capabilities and limitations of man as a
comporent of the flexible wing delivery systems. MIL-H-2789LA (USAF) will
be used as a reference for the application of Human Engineering principles.
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APPROACH TO THE PROBLEM

In general, the efforts necessary to develop a gystem having the desired
flight characteristics s control functions, payload capability, and mission
requirements were divided into two interrelated areas. The results were
integrated into a final system which was then evaluated experimentally,

Simplicity of design compatible with the desired function and program
schedule was g goal, Consideration was given to mission readiness, human
factors, personnel consideration, maintenance, areas of operation, develop-
ment, and final system cost., In some cases, in order to meet the schedule,
hardware was selected early. In those cases, the approach was to satisfy
the worst requirement,

Figure 2 is a flow chart showing how GAC!s Previous experience and the GFE
were integrated into the overall approach, As stated, the progran was
accomplished by a definition of each major subsystem requirement, analysis,
preliminary test, final design integration and evaluation, and reliability
tests, The major subsystems are the wing and its associated hardware and
the control box with the necessary Govermment.~furni shed hardware,

In the development of the wing subsystem, an aerodynamic sizing and con-
figuration study was conducted to establish the wing size and shape as
well as performance parameters. A theoretical analysis supplemented by
wind-tunnel tests, component tests, free-flight experiments, and system
evaluation was also conducted,

Parameters considered in the integration of the wing control box with the
payload were that the control should be effected by the wing tips and that
the wing directional rotation should be independent of the payload,

The initial philosophy for meeting the desired accuracy was that a propor-
ticnal control would be required. This factor influenced the selection of
hardware for converting the control signal to a mechanical motion, as well
as the method of analyzing the incoming signal, a "bang-bang" control
System was, however, used in the final design.

Based on component,, subsystem, and total system experimental evaluation,
necessary modifications and adjustments were made » anc operational proce-
dures were established, The final configuration was “:hen tested for
compliance with reliability, performance, and mission requirements,
Fiff;een systems of this configuration have been manufactured,
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SYSTEM DESCRIPTICN AND OPERATION

GENERAL

The CACS developed as a result of the work reported herein consists of a
delta-shaped twin-keel catenary parawing, a control box, and a ground con-
trol unit, It is capable of being remotely guided to an accurate landing
under a broad envelope of weather and tactical conditions., The hardware,
receiver, and transmitter, which are the automatic homing and guidance
ground-to-air link, were developed under the Amy's direction and supplied
as AN/ASN-95 system to GAC. The balance of the system was designed,
developed, and built by GAC. As a design requirement, the system was made
compatible with the AN/ASN-95 system and GFE hardware,

As shown in Figure 3, the operational system is composed of a deployable
wing, a control platform, and a cargo container, The total system, less
the ground-based transmitter and payload, weighs less than 100 pounds and
occupies an envelope of less than 21 inches by 21 inches by 17 inches as
installed upon a payload. The Sequence of operation is shown in Figure L,

DEPLOYABLE WING

.

The deployabie wing assembly consists of the wing suspension lines and
risers (see Figure 5), the deployment bag (see Figure S);“and the bridle
system including a swivel (see Figure 7). / -

The wing is made from calendered, rip-stop nylon {;th which has been
coated with polyurethane. The porosity of the cl9th is 7 CFM or less with
a differential pressure of 1/2 inch of water. The planform is a modified
delta of the twin-keel variety., Tt has a planform area of 270 square feet
and a theoretical keel length of 16 feet, In the keel area, a catenary
was added to increase lateral stability and to reduce the number of lines
required., The use of the catenary results in a better load distribution
into the wing; thus, a smoother contour and an a@erodynamically cleaner
wing is obtained,

Steering is effected by warping one outsidc wing lobe with respect to the
other, This can be accomplished by adjusting the line lengths, The most
efficient manner is by adjusting the length of the wing tip lines, In
operation, a turn of sufficient radius to meet the contract requirements
can be accomplished by a wing tip deflection of 2,75 and 2,25 inches for
the manual and automatic modes of operation, respectively,

The line material is 2-in-1 stable braid. It is 1/} inch in diameter and
has a tensile strength of 1700 pounds. There are 2y lines, 6 attaching to
each leading edge and 6 attaching to each catenary keel panel, The lines
are terminated in a metal fitting having a heavy web for attachment to the
control box and for securing the wing to the control bax in the packaged

11



configuration, The actual line lengths are given in Table II, and a plan-
form layout showing line location is given in Figr. e 8, In the rigging,
the 6 lines from the right leading edge of the wing go to the right side
of the control platform, and the 6 1lines from the left leading edge of the
wing go to the left side of the control platform, In order to assure that
the control box and antenna axis are parallel with the wing, the odd keel

threading the zero-length~zeefing line through reefing rings attached to
each line at a point 17 feet above the contluence fitting, The reefing
line is also threaded through reefing rings attached to the four nose

lines at a point three-fourths of the distance from the 17-foot ring to the
edge of the canopy. A h-second pyrotechnic time delay cutter is used to
release the reefing line. This reefing method is referred to as "O" + 3/h
nose tuck reefing, A }000-pound reefing line is required for the cavplete
operational deployment range of altitude and velocity, For lesser require-
ments (under 125 knots and under 15,000 feet), a lighter reefing line

(2000 pounds) is adequate,

The packing and deployment bag is made of nylon; when the wing is packed
within the envelope, the wing in the bag is 18 inches by 18 inches by 10
inches high. In the package configuration, the attachment webs and con-
trol line attachment points are exposed far installation onto the control
box, Once the wing has been packed, the unit can be stored in a parachute
storage area,

The wing in the deployment bag is installed on top of the control bax by
four straps, A part of these attachment straps is the packaged wing
restraint straps, The restralint straps are closed across the top of the
packed wing and tied together, and a standard static line is attached (see

Figure 9).

The bridle (see Figure 7) consists of two MIL-W-L088 Type I webs assembled
in such a way as to allow four attachment legs to the control box and
attachment of a Model GL-1850-1 swivel, The bridle is attached to the
lower half of the fittings of the control box in suech a manner as to be
below the box during operation,

The weight of the wing, canopy, lines, confluence fittings, and attachment
webs 1s about 29,75 pounds. The deployment bag is appraximately 1.25
pounds, and the suspension system and bridle are about 3.5 pounds. It is
estimated that the flexible part of the system weight is 34,5 pounds,

The details for rigging, folding, paclfing, and installing this equipment
are presented in the instruction bookl,



CONTROL BOX

The control unit consists of a closed aluminum box (see Figures 10 and 11).
The bottom of the box contains the erectable GFE antenna and the GFE
antenna switching network, The top of the bax contains the GFE radio
receiver and power supply, the servo power supply, the servo actuator, the
servo amplifier, the logic or junction box, the time delay, a press-to-
test circuit, and the necessary wiring harnesses. In addition s the mechani-
cal components necessary for routing the control cables from the servo
actuator pulley out through the box and up to the wing are also located
within the box. Exterior to the box are two spring-like sheaths for the
control cables to pass through to maintain positive tension on the cables
so that cable entanglement does not occur inside the control bax, The con-
trol lines are terminated in large shock-absorbing springs which assure
that loads beyond an allowable value are not transmitted into the servo
mechanism, The control unit is approximately 21 inches by 21 inches by

7 inches and weighs 65 pounds,

The servo battery is a rechargeable nickel-cadmium battery having & nominal
voltage of 28, It has a l-ampere-hour capacity at a S-hour rate.

The servo actuator and the servo amplifier are capable of producing an
operational torque of 60 inch-pounds and stalls at 100 inch-pounds. Only
10 to 15 inch-pounds of torque is required in this application, The servo
actuator is capable of 3-1/2 turns, which result in a possible control
line travel of 10 inches based on drum diameter. Only 2-3/hi~inch maximum
movement is used in the application.

The balance circuits and the potentiometers necessary to adjust servo
travel are located in the logic box. The adjustment of the pots allows
from O to 10 inches of motion in either direction when a specific signal
is received. The alignment of the circuits, the specific voltage values,
and other parameters necessary for proper operation are presented in the
instruction book,

In order to prevent excess loads in the control lines during deployment and
disreefing, the system is neutralized during vhe checkout. By means of a
time delay, the control system is not activated until the parawing is fully
deployed.

Details for setup, adjustment, and checkout of the control unit are pre-
sented in the instruction book. Once the system has been checked out and
made ready for flight, it can be stored in an electronics area with or with-
out the batteries. Provisions have been made for the charging of the
batteries while installed,

In addition, the hardware is equipped with a test button which, by lighting
up two lights, indicates the condition of the servo and radio battery and
certain elements of the circuits. Once checked out and placed on an exter-
nal trickle charger, the equipment can be stored in a state of readiness,

co
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Figure 6., Deployment Bag,
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TABLE IT, MMINAL IINE LENGTHS FOR STABLE FLIGHT

Line Numbers Length
L (Ref. Figure 8) (Ft) (In.)
Leading Edge: 1&7 22 1
2&8 22 1
3&9 - 20 L
L & 10 20 L
5 & 11 18 7
N 6 & 12 17 o0
Keel: 13 & 19 22 6
1 & 20 21 3
15 & 21 20 7
16 & 22 20 2%
17 & 23 19 10
18 & 24 19 L
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SYSTEM OPERATION

A schematic of the CACS in operation is shown in Figure L, The total opera-
tion would consist of moving the packed wing and the control unit from their
storage areas to an assembly area. The payload would be prepared in its
area and moved to the assembly area, Any single-point suspension payload
container holding 500 pounds of payload can be used, .

The wing is installed on the control box, and the control lines are con-~
nected, A standard static line is attached to the wing deployment bag, and
the bridle with the swivel is connected to the conirol box. The assembled
system is then placed on the payload, and the proper attachment is made,

The complete assembly (wing, control box, and payload) is loaded on the air-
craft, and the static line is attached to an adeqrate retaining ring., Once
over the drop area, the signal from the ground-based transmitter is moni-
tored by the aircraft, Upon receipt of the signal to assure that the radio
is on and functioning and when within the operational envelope, the system
is released from the aircraft,

two loops of 80-pound cord tied through the retaining straps and allowing
the bag to separate from the control box. The movement of the bag away
from the control box allows the lanyard to the antenna release to function
and the lines to pay out of the bag. At line stretch, the deployment bag
holding the canopy is cut open, and the time delay pyrotechnic reefing line
cutter is activated.

Upon erection of the antenna, power is applied to the time delay. This
time delay (7 seconds) prevents any control function from occurring until
after the reefing line has released the wing and the wing is completely
inflated. When the time delay has closed, the complete control bax includ-
ing the receiver is turned on, At that point the system is ready for
operation once the receiver has warmed up, The time and Sfunctions for
deployment up to an operational system are presented in Table III,

Prior to system release from the aircraft, the transmitter is turned on.
The ground personnel select either the automatic or the manual control
mode. The mode can be changed during flight by the use of the selection

Assuming that the manual mode has been selected, the airborne system will
orbit after 8 seconds in a loss carrier type of turn until the total system
1s operating, at which time the controls will neutralize, awaiting a command
signal from the ground. As long as a command signal 1s received (either
right or left), the system will remain in a tumn. As soon as the command
button is released on the transmitter, the system will neutralize and
straight'forward flight will be accomplished,

In the case in which the automatic mode has been Selected, the unit will
again spiral until an automatic signal is received. The received signal is
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analyzed, and the correct control information is given to the servo actua-
tor. The unit will continually correct itself, homing in on the ground-
based unit, Should it pass over the transmitter and into the cone of
silence (relatively low radiation energy), the loss carrier function will
occur and the right-hand spiral will commence, The system will descend to

which point the control box will make the necessary changes in directional
control, It is possible that the system will orbit around the transmitter
in still air and spiral all the way to the ground. In either case, the
system is capable of antomatic flight from the aircraft to the ground in
the proximity of the transmitter in an automatic homing mode.

(sec) Funciion
0.00 Drop

0.75 Lanyard taut

1.50 Deployment bag off

- antenna released and erected
= control box power turned on

- lines and wing stretched out
- reefing line cutter activated

2,00 Reefed parawing inflated

5.50 Reefing line cut

7.50 Parawing fully inflated

8.00 Control box turned on

17.00 System at full operatioﬁ condition

7
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TECHNICAL DISCUSSION

GENERAL

A technical program for the development ot a flexible wing delivery system
for all-weather airdrop of cargo with both a:rtomatic and command hcring
capabilities was developed by GAC. This system was intended for military
engineering and service testing and is now representative ot a final pro-
duction item for tactical use. An aerodynamic study was made to determine
the flexible wing configurations to be evaluated. As a result, five con-
figurations were wind-tunnel tested to establish wing rigging dimens:ons.
Limited L/D comparisons were made of the configurations during wind-tunnel
testing to evaluate the wing performances. From the aerodynamic analysis,
the wind-tunnel test results, a structural analysis, and the preliminary
flight tests, a specific wing configuration was selected,

Additional flight testing resulted in the develt&ﬁment and finalization of
packing techniques, reefing method, and cdeploymeht method in order to
develop a system capable of being dropped from 500 feet to 30,000 feet at
velocities from O to 150 KIAS., A guidance and control study including
antemna pattern investigation was conducted incorporating the GFE trans-
mitters and receiver. The parawing and control box were then merged to
evaluate the control system response and effect on wing performance through
extensive flight testing., Finally, qualification tests were run, and the
flight test data were evaluated to establish system reliability. An
instrumentation system was designed to incorporate a GFE CEC recorder for
the gathering of certain data for use in determining performance
characteristics. :

The program included generation of reliability, maintainability, and
quality assurance plans as well as detailed test instructims and test
plans and equipment as required for evaluation ot system and equipment
performance,

AERODYNAMIC ANALYSIS

A preflight aerodynamic analysis was performed on a single-keel contigura-
tion of the all-flexible parawing to determine if it was feasible to meet
the contract performance requirements., The single-keel configuration was
used for the analysis because of the existence of more data on this con-
figuration as opposed to a twin-keel or a twin-catenary-keel configuration,

The analysis defined performance characteristics such as maximum L/D
attainable, vertical descent rates, effects of payload drag on L/D, and
lateral control capabilities, Effects of the addition of a catenary-keel
panel were also considered. The analysis was based pri-arily on the
results of previous wind-tunnel data.
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The analysis indicated that the performance requirements of (1) effective
L/D greater than 1,8, (2) vertical descent rate at impact of less than 25
feet per second, and (3) 100-foot radius turn could be met and, in most
cases, exceeded.

) “

As a result of the aerod mamic analysis, which is included in Appendix T,
five candidate wing configurations were selected for further examination
and testing (see Figure 12):

1. Single Keel

2. Twin Keel

3. Single=Catenary Keel

o« Twin-Catenary Keel

5. High-Aspect-Ratio Twin-Catenary Keel >

In additlion to these five configuratims, a tw:.n-catenary keel reefed into e
a single-kecl parawing was tested, =

WIND-TUNNEL TESTS

GAC in conjunction with NASA-JRC personnel conducted a L-day preliminary
flight test program in the full-scale 30-foot-by-60-foot Langley wind

turnel, The purpose of the tests was to trim out the five parawing con-
figurations selected as a result of the aerodynamic analysis., The -
configurations tested are shown in Figure 12,

These six configurations were trimmed, and rigging lengths were recorded.
Due to the limited tumnel time available, optimization of L/D performance
was not obtained. The wings were flown‘and trimmed, and data was taken at
speeds of 35 to 60 feet per second. The data showed a good correlation
with wind-tunnel data obtained by other experimenters. The rigging and
suspension system geometry was used for the preliminary flight tests at
Yuma Proving Ground, Yuma, Arizona,

: A
The' wind-tunnel test data is includjed in Aopendix II,

The wind-tunnel tests indicated a 2?.-percent' ¢reater L/D for the twin-keel
configurations as compared to the single keel,

STRUCTURAL ANALYSIS ’ : |

A structural analysis of a single-keel parawing configuration was conducted
to determine the structural requirements for the canopy and suspension sys- -
tem. ,The analysis was based on the assumption that the leading edges and
keel are straight lines, and the angle of attack is the angle which the
plane of the leading edres makes with the flight path. A brief analysis

was also perfommed on the twm-keel parawing.

The single- and twin-keel parawing systems analyzed are defined in Table IV, -

27



4

The structural analysis of the wings is given in Appendix III, A preli=-
minary analysis was also done on the comtrol bax, bridle, swivel, and
attachment fittinge to define the reguirememts of the imegrating hardware.

Deployment is a major consideration because the deployment conditicn is
critical for most structural elements; therefore, the weight of the system
is governed by deployment-stress requirements,

The parawing inflation time, tg, may be predicted by

where
2.5 = empirical constant
I"K = keel length in feet

\

D " deployment velocity in feet per second

The total dynamic load is given by

Pp = SuCp O .‘ (2)
vhere ' ) %
. X
Sy, = wing area in square feet
g =i .dynamic pressure in pounds per square foot
p .

Cp = shqeck opening factox
Preliminary tests showed Cp to be 3.0. @
Figure 13 graphs “the relatidnchip between the deployfhent velocity, the wing
loading, and the maximum g loading for systems without reefing., Tor
example, with a payload weight of S00 pounds and & deployment velocity of
150 knots (253.5 feet per second), the resulting load is 38,000 pounds for
an assumed wing loading of 3 psf, & load factor of 76 g.
This computation results in a 'ﬁgh value because it was based Zm wind-
tunnel test data and corresponds to an infinite payload mass. Figure 13

and the calculation are for the worst condition, that is, without reefing.
Reefing techriiques have reduced the opening shock by at least 75 percent,



GUINANCE AND CONTROL ANALYSIS

Two methods may be employed for guidance and control of parawing systems:
(1) displacement of the suspension lines and (2) addition of a drag device.
Most systems with all-flexible parawings use various foms of line-length
adjustment, The CACS program currently is using the method wcveloped at
the outset of parawing development: that of adjus‘ing the length of the
rear leading-edge lines to afford directional cont._ol.

The guidance and comtrol system is designed to operate as an integral part
of CACS. It uses a radio receiver R-1593( )/ASN-95 as on-board eoulpment
and a matching transaitter T-1110( )/ASN-95 as the ground aoming station,
If the razin frequency signal is lost, as when passing over the target
transmitter, the system will automatically apply a control force to produce
a preset turning rate. The vehicle will fly a helical path to the ground
unless the signal is again received.

Although the system appears to be susceptible to a 180-degree ambiguity, no
practical ambiguity exists. The systen is designed to recognize which
antenna is receiving the greater modulation signal and to turn toward the
stronger signal, As Figure 1) illustrates, the system will fly toward the
homing beacon regardleas of initial heading.

The number of degrees of devietion from the 180-degree axis that is required
to provide sufficient signal differences to be recognized by the control
system depends upon factors. such as transmitter and receiver antenna pat-
terns, receiver sensitivity, roll attitude, differential amplifier
resolution, and resolution of the comparison circuits. The sum of the

above factors could exceed +15 degrees; however, preliminary testing indi-
cates that the system resolution is within _4_:5 degrees from the rsar and the
front,.

The control cables are required to deliver a maximum force of 30 pounds for
the twin-catenary-keel parawings. With a 1-inch-diameter wrap drum, the
torque on the output shaft of the gearbox would be 30x 1/2, or 15 inch-
pounds, The servo system is capable of maximum control-line travel of

10 “nches (present setting is 2-3/h inches maximim left or right),

An antenna.system has been designed to provide the best comparison between
directivity and receiving sensitivity (see Figure 15). The antennas con-
sist of the two quarter-wave elements on the mounting plate and connectors,
The quarter-wave electrical loop and the RF switch, matching networks, and
cables are also shown at the inputs to the RF switch (see Figure 15).

At the switching rate, the antenna pattern is essentially a cardiojd homing
pattern directed to the right or left side of the perpendicular line join-
ing the antennas in the horizontal plane, The homing signal sensitivity,
assuming a cardioid pattern as shown in Figure 16, is proportional to- the
sine (I S/\ ), where S/A 1is the space between the iwo antenna elements in
wavelengths,

29
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The electrical length, in wavelengths, of the loop termination between the
two antennas js zqual to the spave dimensicn, S, The RF switch suppliea a
single-ended output for the receiver and eliminates the need for two RF
amplifiers., A spacing of S = 0,25 seems to provide an ideal design com-
promise in sensitivity by giving an output differential signal change of
2,5 db for a 10-degree pointing error.

To operate at frequencies sufficiently high to remove interference from
the ground, a one-to-three scale-mocdel version of the antennas and the
payload box was designed and fabricated. Pattern measurements were made
on the antenna range at GAC's Wingfoot Lake facility. Both vertical and
horizontal patterns were taken, including tests for voltage standing wave
ratio (VSWR), impedance match, and equal gain at the boresight position
for right- and left-hand patterns,

The approach to the mechanical development of a suitable control system for
the parawing was to use as much of the knowledge and as many system com-
ponents as possible from the list of those already developed and qualified.
It was hoped that this approach would prevent redundant efforts and provide
the most rapid means of achieving a qualified parawing system, The system
was to use the radio receiver and transmitter system supplied as GFE. To
complete the system, a servo system and a standard aluminum box were
selected for the system. The initial units were designed around the larger
iterim-mocel receiver and battery. The necessary interface circuitry,
instrumentation circuitry, and power distribution circuitry were designed.
Servo system power requirements were determined, and a suitable nickel-
cadmium battery pack was selected. The entire system was then adapted to
the standard aluminum box,

The interim-model receiver was a lower frequency system and did not have
the proportional homing capability but was modified by GAC to incorporate
this feature for the early .est phase,

_As stated pr%vious]y, in order to analyze and evaluate the antenna system,
& scale model was fabricated and tested. Antenna radiation patterns were
measured at six different element spacings to optimize antenna placement,
Effects of pitch and roll on radiation patterns for the optimum spacing
and payload affects were also investigated. From these investigations,
antenna placement and ground plane predictions were made for the low=
frequency interim-model receiver, Tndications were that a ground plane
extension should be used for automatic homing with this system. As a
result ¢ this, and the fact that the final receiver system was to be ready
early in the program, the interim radio was used in the manual mode only,
The scale model antenna analysis also resulted in initial predictions for
the higher frequency final receiver antenna system. For details of this
scale model antenna system analysis, see Appendix IV,

An analysis was also made of the instrumentation requirements, and the nec-
essary circuitry was designed to cbtain this information using the GFE CEC

‘recorder. The original instrumentation system is described in Appendix VI,
and the instrumentation data obtained is summarized in Appendix VT,

I3
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TABLE TV, SYSTEMS DEFINITION

Ttem Single Keel Twin Keel
Wing planform area 220 sq ft 275 sq ft
Theoretical keel length 18 ft 16 £t
Maximum wing loading 2.7 pst 2.7 psf
Fabric tensile strength required, warp
and fill 135 #/in. 120 # /in.
Minimum strip tensile with a factor of
safety = 3/1.
T -5 2
= 7.19 x 10 ~ LxFg¥p
where Tp is the tensile strength of
fabric, Lx is the theoretical keel
length, Fg is the factor of safety,
and VD is the deployment velocity.
Resultant velocity of system in flight L8.75 fps L3.75 fps
Vertical descent rate with L/D = 2 21.8 fps -
Vertical descent rate with L/D = 3 - 15.L4 fps

3k




DEVELOPMENT TEST

GENERAL

The development tesgts\were to include the evalunation of independent compo-
nents of their asse into a unit through a complete system., However,
many of the system dévelopment tests were done in actual free flight and
have been included under flight test., Also, part of tne parawing develop-
ment effort was accomplished in the wind tunmnel and is presented as part of
the technical discussion, Because of the nature of this program and tt=
aprroach used, that is, the assembly of developed and qualified hardware,
the development test area was limited to antenna performance and location
evaluation and the detail examination of thes subassemblies in the control
unit, The objective of the control system test was twofold: (1) to assure
that the total system would function as desired and that the independent
compcnents or assemblies would function properly, and (2) to establish the
accertance test procedures, Development Test Instruction (DTI), in accor-
dance with the quality requirements of this program.

ANTENNA

The preflight or development testing of the antemna system for the final
receiver consisted of determination of optimum antema spacing, design, and
fabrication of the antenna erection mechanism, and testing of the full-
scale antenna system,

The impedance of the individual antenna elements was taken, loss measure-
ments were made through the RF switch, and radiation patterns were taken on
the overall antenna system, For these tests, the actual antenna installa-
tion on the control bax cover was used with full-scale mockups of the
control box and payload. The detailed test resulis and antenna patterns
obtained are given in Appendix V.

2

CONTROL SYSTEM

Control system design and fabrication techniques were finalized, and DTI*s
were written for preinstallation tests of the following purchased and
GFE items:

1, Proportional Servo System
2, Servo Batte{y Pack
j. Control System Time Delay Relay

k. Interim Model Radio Receiver and Transmitter System :
5. AN/ASN-95 Navigation Set

In addition, test procedureé were written for the logic box assembly and
the complete control system. Calibratior. test instructions were also
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written for the GFE receiver test set. Test setups were designed and fab-
ricated as recuired for the NTI's, A complete_set of DTI's can be found
in the reliability and maintainability report.Z

Each of the camporents was thoroughly tested, and their characteristics
were noted for final integration into the control system,

The first two control systems were fabricated using the early model
receiver, and they were delivered for field test. These two units were
flown successfully, but only the manual control mode was used because the
scale-model antenna tests indicated the need for a ground plane extension
for the antennas for automatic homing. The manual control flights were
useful for preliminary determination of such factors as control line pull-in
versus turn rate, etc.

The R-1593( )/ASN-95 receivers were incorporated into the next systenms,

The preliminary tests of the final system in the proportional homing mode
indicated that the system was very sensitive. The error angle required for
full cable pull-in would result in what would amount to a "bang-bang" sys-
tem, The system sensitivity was such that hunting of the servo system
resulted, The tests showed the need for a more comprehensive investigatiom
and optimization of the system with respect to receiver sensitivity, servo
system sensitivity, servo dead band, noise lsvels, antenna patterns,
desirable error angles, and antenna boresight errors. In the interest of
cost and time, GAC elected to use the "bang-bang" steering for field test.
The "bang-bang®™ system was found to satisfy the contract requirements and
was incorporated into the system,

O
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FLIGHT TEST

GENERAL

Because of the nature of the program and its ultimate objective, the aero-
dynamic and flight tests were the most significant tests that were conducted.
The wind-tunnel tests aid their results have been presented under technical
discussion and in Appendix II. The objective of the flight test program was
to evaluate the wing performancc, deployment system, control box-wing inte-
gration, reefing and system performance, and reliability evaluation. The
flight test evaluation was divided into four areas: preliminary flight
tests, deployment tests, control flights, and performance and reliability
evaluation, ,

During this task, the major system integration was accomplished by obtain-
ing the best performance characteristics of each subsystem when combined
with the balance of the hardware.

' results of the flight test program are presented in this section,
A ix VI presents the onboard flight instrumentation data,

A
" PRELIMINARY FLIGHT

The objective of this phase of the flight test program was“the selection
of the wing configuration for more complete evaluation,

The preliminary flight tests were conducted during two separate efforts, °
The first was from 8 July to 9 August 1968 at Yuma Proving Ground, The
second series of flights occurred 10- September to 1 November 1968, During
the first series of tests, 108 flights were conducted. They consisted of
6 dummy man drops for trim, 49 live man drope to evaluate deployment and
control, L2 cargo drops without control box for deployment and trim evalua-
tion, and 11 controldrops for manual model considerations and the evaluation
of certain mechanical features. The objective of this series of tests was
to verify and adjust the rigging line lengths and material established by
the wind-tunnel effort and structural analysis as well as wing configura-
tion.. In addition, the effect of various reefing and deployment techniques
wis investiggted, and the control characteristics of the wing were to be
determined means of personnel and manual control drops,

The variables ﬁ:estigated for these series of tests were:
a, Steel

b. Nylon - Polypropylene 2-in-1 stable braid

]

237



c. Nylon fubular
d. Nylon braid
e, Dacron - Polypropylene 2-in-1 stable braid
f. Dacron twisted
2., Canopy Configuration

a. 220 £t° planform area - Single Keel (SK)

2
b. 220 ft planform area - Single-Catenary Keel (SCK)

c. 270 £t? planform area

Twin Keel (TK)

d. 270 ft2 planform area - Twin-Catenary Keel (TCK) 3

d. 360 ftz planform area - High-Aspect-Ratio Twin-Catenary Keel 7 ’

3.7 Reefing Techniques : -
a, Standard reefing line rings on the periphery ot the parawing
‘with line lengths from 50 to 80 percent of the parawing keel
length
b. Daisy chaining the keels together with the aft opening first
c. Daisy chaining the tralling edges clcsed
d. Combinations of a, b, and ¢
e. Snyder reefer in lengths from 48 to 8L inches
L. Packing Techniques
a, Simple sleeve with line stowage provision
b. 3Stock bags with line stowape provision
e. ' Disposable bags ' g
¢ f. Commercial design sleeve
The test conditions were a suspended weight of 65 to 565 pounds (live man
drops, approximately 180 pounds) , a drop altitude ‘of 1000 to 7000 feet, and
a velocity of 5 to 150 KIAS, ¥ \

The objectiﬁe of tﬁe personnel tests was to-make preliminary measurements "L
and judgments, which would be difficult to obtain without a very sophisticated
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~ determined. Since the major objectives of this effort were accomnlished,

e

on-board and ground instrumentatiog system. The indication was that the
man's descent rate on the 270-foot twin-catenary-keel parawing was 8 to 10
feet per second. Also, for the twin-catenary keel, a 6-inch pull on the
control line with a man payload required 16 to 18 pounds of pull, This,
produced a 6~ to 7-second 360-degree turn with a turning radius estimated
at less than SO\feet. The parawings with a catenary keel could be flown
in turns estimated to be 20- to 30-foot radius with no apparent sideslip

or lossof control, , ¢

Based on personnel and cargo flights and obéervation only, it appeared that
the wings with catenaries performed better than those without. It was also
determined by observation and comments by the ‘jump personnel that the twin-
catenary keel performed the best. o )
As stated above, various line materials were investigated; as a result,
Dacron polypropylene 2-in-l stable braid was selected. With respect to the
reefing techniques, it was determined that the approach in which only the
lines are restrained would be used. The exact metiod was not determined; §
only the approach was considered.

1 . . \
Two flights in this series were instrumented, and the data is given in
Appendix VI,

§

As a general result of this series of flight tests, it was determined that
a twin-catenary-keel parawing with Dacron polypropylene 2-in-1 stable braid
was the canopy and line contiguration that should be used. Based on the
use of the interim-model receiver and transmitter. equipment, it was deter-
mined that manual control was posgible. The use of the swivel was proven,

“and adequate control response was obtained, The indications were that the

parawing system could meet t{he desired requirements., The specific deploy- -
ment and packing technique was not worked out; however, the general folding
arrangement for the parawing was established. Areas in which control box
improvements could be effected with respect to the mechanical design were

this part of the test program was concluded. A summary of the test phase
is presented in Table V,

The preliminary,flight tests, part two, were initiated at Yuma Proving ° .
Ground. The objectives of these tests were to investigate deployment and
reefing tecnniques and the control system capability using the tinal

receiver and transmitter in both tre autcmati¢ homing and the manual con-

trol modes. _ -

Curing this test sequence, 82 flights were made.. They consis‘.ed of 36

dumy cargo "trim" ‘flights and deployment tests and L6 flights for control y
tests. Tt was determined during®this test series that the wrap-type reef- -
ing technique siich as the Snyder réefs would not perform over the altitude-
velocity eqyelope rquﬁrement” and a special package and deployment container
was n2cessary for the unit, After several signiticant failures, this effort
was terminated,’ and the intformation obtained was reviewed in detail prior

to iritiation of the deployment test nhase., Table VI is a general summary

\
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of this flight series, and Table VII is a summary of the flights in which
a control unit was used.

It was determined that once good deployment had been accomplished and
opening shock kept down, the system would function well, Based on this

and the reefing line and packaging information, a detailed deployment test
series with specially designed and fabricated hardware was planned, designed,
and performed.

SYSTEM DEVFLOPMENT FLIGHT TEST PLAN

An analysis ot the data ob ..ined on the preliminary program and an exten-
sive review of the test mcvies were used to prepare a test plan. As

stated in the requirements, the system must be deployable from a 500-foot
altitude to 30,000 feet. Consideration was given to two general approaches,
The first used a drogue, and the second was lanyard extraction of the wing.

The two general concepts were investigated. It was assumed that the
drogue approach might encounter problems at the low-altitude limit and the
lanyard would produce the maximum load. An analysis using the drogue con-
cept assuming a 68-inch D, flat circular pilot chute was performed and is
summarized in Table VIII, Tt indicates that this concept should be
investigated experimentally.

In evaluating the lanyard approach, it was assumed that the deployment
velocity was 150 knots; a sea level air density was used, and an opening
shock factor of 2 was assumed for the 30,000-foot condition, Based on
these assumptions and a reefed mode, the peak load was calculated to be
68L0 pounds. (The maximum load measured with proper reefing during the
flight test was 6100 pounds.,) The total capability of the lines (24 lines
at 1700 pounds per line) is 140,800 pounds, resulting in a safety factor in
excess of 3. In examining the 500-foot case, it was determined that a
li-second time delay should be used. This factor was also used in obtain-
ing the above loads. Based on the above and the tolerances accumulated,
such as reefing delay time and simplicity of system, the lanyard appeared
to be somewhat better than the drogue concept. However, it was determined
that an experimental evaluation would be required for final selection.

As stated, one of the conclusions from the preliminary fiight test program
was the requirement of a packing and deployment unit designed particularly
for the parawing. This unit is to encompass the handling as well as opera-
tional requirements. Two concepts were investigated: a bag and a sleeve,
In hoth cases, provisions were made so that a drogue or lanyard could be
attached to the bag or sleeve,

As a result of the preceding test program, it was determined that the wviig

and rigging configurations were satisfactory, and the mechanism of the con-
trol box and the "bang-bang" comtrol, instead of the proportional control,

would be adequate to meet the contract requirements. Also, the final

bridle length was determined.

Lo



It was determined that the balance of the tests should be to establish the
best method for extracting and deploying the wing, establish the reefing
method, determine the control adjustments and attachment requirements, and
evaluate the performance and system reliability. In order to accomplish
these objectives in the most expeditious manner, a test program was
designed which had a series of tests each having a primary objective,
However, they were integrated such that secondary objectives could be
accomplished; i.e., a flight having deployment evaluation as its primary
objective could have a secondary objective of control response., An order
of preference was established, and most of the data for a particular factor
was accumulated before the next series of tests was started. It should
also be pointed out that the total test was changed when the data so indi-
cated; however, a tes. seriz2s was always completed to assure the total
availability of data. The program developed, as a result of the above,

is presented in Tables IX through XIT,

During the generation of the test program and the plan and review of hard-
ware requirements, a system for recording and reporting test conditions
and data was established. The specific forms are presented in Figures 17
through 22, (Note that Figure 17 was replaced by Figures 18 and 19 during
the course of the program.) The forms were completed after each flight,
The objective of these forms was to reduce the possible variations to a
minimum and to record as much of the same data from each flight far com-
parison evaluation,

Upon completion of the test plan, forms, and approach, and a review with
the cognizant Army personnel, the next phase of the flight test and evalu-
ation program was initiated.

Because of the results of the flight test program, changes in the tests
were made, Table XTII lists all the tests conducted beyond the preliminary
tests, It shows the flight number, the deployment altitude, the deployment
velocity, and the type of test.

DEPLOYMENT FLIGHT TEJTS

The specific objective of the deployment test series was to finalize a
system capable of being deployed from 500 to 30,000 feet at velocities
from 0 to 150 knots indicated airspeed. In order to accomplish this
objective, two reefing arrangements, two packing systems, and four extrac-
tion arrangements were experimentally evaluated at Yuma Proving Ground,
One additional reefing arrangement was also examined experimentally,

A zero-length reefing line located at the length of the No., & line (17 feet
from the fitting) on all the lines was the basic configuration. The vari-
ation evaluated was the distance that the nose was drawn down from its
full-up position toward the 17-foot dimension. The four nose lines were
pulled down either one-half or three-fourths of that distance. For

one test the nose was drawn down to a point coincident with the 17-foot
reefing line attachment point,
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The packing configurations were a deployment bag and a deplovment sleeve.
The wing was extracted by means of a lanyard attached directly to the pack
or to a drogue which then extracted the wing, The time delay is ) seconds
for the reefing line cutter when the lanyard approach is used, when a
drogue is used, 2 seconds is expended on the drogue and 2 seconds for the
disreefing of the wing. A 68-inch D, flat circular parachute was used as
the drogue.

A summary of all tre derloyment flight tests is presemted in Table XIV,
The eight configuriii .’ tested were:

1. Bag with drogue and 0 + 1/2 nose tuck reefing

2. Bag without drogue and 0 + 1/2 nose tuck reefing

3. Bag with drogue and 0 + 3/L nose tuck reefing

L. Bag without drogue and 0 + 3/L nose tuck reefing
5. Sleeve with drogue and O + 1/2 nose tuck reefing

6. Sleeve without drogue and 0 + 1/2 nose tuck reefing
7. Sleeve with drogue and 0 + 3/l nose tuck reefing

8. Sleeve without drogue and 0 + 3/l nose tuck reefing

Each of the eight configurations was dropped from 3000 feet at deployment
velocities of L0, 80, and 120 KIAS., Maximum shock loads were recorded by
means of a Brinell block measuring device between the payload and the
dummy control box, In several cases, the instrumentation unit was used to
confirm the Brinell data., This series of tests consisted of flights 201
through 229, The 1osults of these tests and a comparison are presented in
Table XV, It can be seen that the 3/ nose tuck gave the most consistent
low deployment load,

The 3/L tuck lanyard deployed in both the bag and sleeve was selected far
the next series of tests., The two configurations were tested at 120 knots
and deployment altitudes of 5000, 10,000, and 15,000 feet., These are
flights 230 through 235 and are presented in Table YVI, The final con-
figuration selected based on the data obtained was a deployment bag, without
a drogue chute, with zero-length reefing line, and with a 3/l nose tuck.
Flights 237, 238, and 23° are of this configuration for indicated airspeeds
of 150 knots and 5000-, 10,000-, and 15,000-foot altitudes (see Table XVI).
The results of these flights verified the selection.

The reefing line was sized from the preceding flights and selected tests
through flight 324. The flights used to size the reefing line and the
results are presented in Table XVII. I! was concluded that a L;000-pound
line would allow the system to function over the complete range of condi-
tion and that a 1700-pound reefing line would limit the performance
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envelope to 10,000 feet and 120 KIAS.

In summary, the deployment tests resulted in the selection of a bag, zero
reefing line, 3/L nose tuck, LOOO-pourd reefing line system. Sufficient
data was obtained to establish insured performance over the required spec-
trum of conditions,

Upon campletion of these tests, a preliminary series of control flights was
mades They were flights 240 through 2L9 in which inconsistent results were
obtained. It was determined upon examination of the flight hardware that
excessive loading had been experienced during the deployment tests: there-
fore, new equipment should be used for the control tests.

CONTROL SYSTEM EVALUVATION FLTGHT TEST

The objective of this part of the flight test program was to evaluate the
effect of control system response on the wing performance and to establish
the type and amount of control required. The flight tests necessary to
obtain data to accomplish the objective cf these tests were conducted at
Yuma Proving Ground, :

The general requirements of the total system including the control box
were as presented in Statement of the Problem. It appeared fram the data
obtained on flights 201 through 239 that the wing was more than capable of
meeting the objectives, The wing performance would be degraded by the
addition of the control box, Because of this, a series of tests was con-
ducted to evaluate' the attachment point of the control line to the control
cable and the amount of control line movement for each made of operation,
This series of tests was divided into two efforts. The first was to insure
that the wing was in trim and performed properly, and the second consisted
of controlled flights with the trimmed wing. There were L2 deployment and
trim drops and LL control flights for a total of 36 tests,

A sumary of the control flights conducted is presented in Table AVIII,

The effect of the control box on the performance of the wing for the most
part was based on visual observation, motion pictures, and stopwatch-type
data. Severa. attempts were made to obtain adequate data using a variety
of irstrumentation systems, However, it was determined that cinetheodolite
coverage would be required in the last analvsis to determine specific per-
forrance narane ters,

One of the items to be determined was effective L/D of the system. Figure
23 is a definition of effective L/D, It is the glide angle once the sys-
ten is flying and heading toward the transmitter in a no-wind condition.
Should it pass over the transmitter and enter the loss carrier mode of
operation, that portion of flight is not considered for the effective L/D

evaluation.
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The cinetheodolite data was obtained on flights 326 and 327. A reduction
of the data is presented in Figures 2L and 25. The L/D obtained for
flights 326 and 327 was 1.9 and 2,1, respectively. Figure 25 shows that an
effective L/D as high as 3.1 was achieved during the early part of that
flight. All of the values obtained were well in excess of the required 1.8.

x
A second requirement was a vertical impact velocity of less than 25 feet per
second, The results from both cinetheodolite flights are presented in
Figure 26, The impact velocity was 20 feet per second and 17 feet per
second. Both of these values are below the requirement set for impact
velocity; that is, not to exceed 25 feet per seconi.

It was also required that the system be capable of a 100-foot turn radius.
The data obtained shows that the 100-foot turn radius requirement was
achieved,

The cinetlieodolite data obtained from these two flights confirms the rough
data obtained on the balance of the flights., Therefore, it can be concluded
that the system performance with respect to the parameters discussed above
are equal to or better than that necessary to meet the requirements,

As a result of this effart, it was concluded that far automatic operational
mode, control would be accomplished by deflecting the wing tip 2-1/ inches
for the automatic homing mode and 2-3/1; inches for the manual and loss
carrier modes. It was concluded that effective L/D could be obtained and
that an average turn radius of 100 feet was achieved with the above wing
tip deflectdon values, I% was also concluded that impact within 100 feet
of the target during manual operation could be achieved.

Although additional flights were not conducted, the data was reviewed far

performance CEP and relia"hility predictions. This review is presented in
the following sectdion,

PERFORMANCE AND RELIABILITY FLIGHT TEST

A detailed analysis of the performance, turnaround time, reliability, and
CEP is presented in the Reliability and Maintainability report?. There-
fore, only the data used and conclusions are presented here.

Sufficient data was to be obtained to evaluate the CEP of the system in a
15-knot wind. A specific CEP was not a requirement; however, a goal of
200 feet was considered. The data applicable to this determination is pre-
sented in Table XIX. The average impact distance was 169.6 feet; a CEP of
180 feet with a 90-percent confidence level of 200 feet with a 91-percent
confidence level was obtained,

The reliability predictions were based on the data presented in Table XX.
It was determined that the system's reliability was 93.3 percent with a
90-percent confidence level or 95 percent with an 85-percent confidence
leval.
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The reaction time objectives were preflight of 15 minutes and turnaround
time of 125 minutes. The time achieved was 15 minutes and 45 minutes,
respectively,

Results of testing show that the system meets all of the perfarmance
requirements as defined in ‘the contract Statement of Work,
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TEST NO.
DATE

o Static Line Length

Size

Deployment. Tag S§/N

- Reefing Line Cutter 8/N __
Delay

Control Box P/N .

1 S/N

- Bridle S/N

‘_‘_____—__——- Swivel §/N
-_——

S Quick Disconnect P/N

S/N
- Payload Nomeunclature
Weight
2 IV
- Transmitter S/N

Figure 19. Development Test Hardware Definition
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FLIGHT TEST SUMMARY

r

Date: Time: Test Number:
Afvceraft: Depl. Vel. Altitude:
Parswing: Contx. Syst: Payioad Weight:
Payload Weight: ‘pnncumentntion:

Flight Type:

Flight Deta{l:

Atmospheric:

Recorder & Witnesses:

Figure 20, TFlight Test Summary

19



CONTROL SYSTEM FLIGHT READY TEST - PPADS Test Date

System Serial Number Flight No.
Component List Serial Number Component List Serial Number
Servo Amplifier Battery Receiver
Servo Actuator - Battery Servo
Time Decay Relay Logic Box
Receiver Electronic Switch
Battery Voltage Servo Battery Receiver BRatterv
No Load . 32 + 2v No Load 28 4+ 2 Volts
10 ohm 28 + 2v 30 ohm 25 + 2 Volrts
Time Delay

Close Deployment Switch note between Deploy indicator out and Power (T + 9)
indicator on.

seconds (nominal 9 seconds)

Voltage Regulator

With Servo Battery
Battery Voltage Regulator Qutput

30 volts Nominal

Flight Notes:

Figure 21, Control System Fli ght Ready Test - CACS
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CONTROL SYSTEM FIIGHT READY TEST.- PPADS (conrinucd)

Pace 2. nf 2

Adjust Potentiometers and operate cont: ' indicated, measure cable trav:l and voltages:

Function | Potentiometer Control Cable HiLever Feedback
Adjust Travel Preset
»
IManual Left R4 K2
Manual Right RS x1
Loss Carrier R6 K3
Home Left R2 K6
ilome Right R3 K7

Measure an equal length of :ontrol cable in center position of actuator

Antennas checked for shorts and grounds.

Assembly Package

Note connectors are properly secured, hardware complete and bolts secured.

Loss Carrier jumper disconnected Counected

Note irregularity

Final Check

With syptem compleiely assembled, operate the control box by releasing the antenna.

Operate the transmitter for the following actuator operation. (NOTE: Transmitter should

be a minimum of 10 feet from the control box.)

Manual Control Oontrol‘ Cable Pull In
Right _____ Right
Left Left
Transmitter Off Right Left

Home (Transmitter Position)

Right Righet
Left Left

Return to actuator center position - note any deviation from position marked.

Tested by Dste

Figure 22, Control System Flight Ready Test - CACS
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Altitude (Ft x 10°)

Altitude (Pt x 107)

T

]

No. 326 L/D Performance Curve.,

! 0 = R‘H
s — L/D 7
! | Where:
j [ - Lelie
rl i i D= d.rag
| \FL(/L’T’ 11'9 Z = altitude
&0 + it l_ Rg= range ]
i | | g I
0 : i \\[ [
0 | 1 .} ’ \.\a;. ’ i
| i
2.0~ ! | | \"11 _ |
. | | | .[ i S
ol mdi L | L O
O 2.0 Lo 6.0 8.0 10.0 12.0 4.0 16.0 8.0 20.0
Range (Ft x 103)
Figure 2}, Parawing Performance Flight Test

T T I
R
L/D = 'zﬂ
Where;
. L = 1ift
D = drag 1
L/D = 3,1 2 = altitude
, | Rg= range )
h-n |\'.IJ '-} —
O
T‘-E' Sy ama + L
I 3\07
o) | l , t""\
0 2.0 Lo 6.0 8,0 10,0 12.0 1.0 16,0 18,0 20.0
Range (Ft x 103)
Figure 25, Parawing Performance Flight Test

No. 327 L/D Performance Curve,
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(8 JULY TO 9 AUGUST 1968)

TABLE V., SIMMARY OF PRELIMINARY FLICHT TESTS

Parawing
| No, Flight Tvoe Reefing Notes
1 Trim TcK2 Keels together LOO¥ steel lines
2 Trim SCKP - LOO# steel lines
3 Trim HAR® Keels together LBO# steel 1-nes
L Trim TCK - LB0¥ stoel lines
g Trim SCK . LB0¥ steel lines
6 Trim SCK . LOO¥ steel lines
1 Trim TCK = LBO# steel lines
8 Trim TCK 80% reefing line Dummy, reefing delay
failed
9 Trim TCK SL" Snyder Dummy, deployment
good
10 Man TCK - -
11 Man TCK - -
12 Trim TCK i sec aft 6-sec keels S00#
13 Trim TCK SL" Snyder Dummy
i Trim TCK - S00#
15 Trim TCK = Durmmy
1  Trim . TKd = SLo#
17 Trim SCK - Dummy
18 Man TCK - -
19 Man TCK - -
20 Trim SCK - Dummy
21 Man TCK - -
22 Man TCK - -
el Man TCK - -
2h Man SCK - -
25 Man TCK - -
26 Man TCK - -
27 Man TCK éL" Snyder 10-15 sec disreef
28 Man TCK éli" Snyder 7-10 sec disreef
29 Man TCK None -
30 *fan SCK 64" Snyder Less than S sec
disreef
31 Man TCK éL" Snyder -
32 Man TCK SL™ Snyder Less than 5 sec
disreef
33 Man TCK - -

2, Twin-Catenary Keel

b single-Catenary Feel

C Yigh Aspect Ratio
Twin Keel
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TABLE V - Continued l
Parawing

No, Flight Type Reefing Notes

34 Man TCK = -

35 Man TCK - =

36 Man TCK - -

37 Man X = =

38 Man TCK - -

39 Man SCK = =

4O  Man TCK - -

I Man SCK - -

L2 Man X - -

L3 Man TCK = -

Ll  Deploy SCK - 110 M, steel lines

L5 Deploy TCK Xeels together 110 kn, steel lines,
wing tore, static line

1) Deploy TCK Keels together 110 kn,steel lines,
wing tore, static line

L7 Man TCK &4" Snyder -

L8 Man TCK 64" Snyder -

Lo Man TCK - - ,

50  Man SCK = - a

51 Deploy TCK Snyder + 6 sec 1180#

52 Deploy CK 6 &1 L8oF

53 Deploy SCK Snyder LOOK, steel lines,
payload strap broke

54  Man TCK - -

55  Man TCK 5 .

56 Man B o Snyder -

s7 Man TCK - -

58  Man TCK = =

59  Man SCK - -

60 Man TCK - -

61 Man K - -

62 Man TCK - 11 sec delay

63 Man TCK - Hop & pop -

6L Deploy TCK 6 sec 110 kn, 500#

65 Deploy TCK 6 sec 110 kn,

66 Deploy TCK 6 sec 110 kn, 3

67 Deploy SCK - 30 kn

68 Deploy SCK - 30 Im, S500¥

69 Deploy TCK - 30 Im, S0OF, 10 sec to
disreef

70  Deploy SCK - 30 kn, 500¢#, 6 sec to
disreef

71 Deploy - - 30 km, S00F

T2 Deploy TCK - 110 h'l,m, lost pay-
load (release)
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TABLE V - Continued
Parawing
No, Flight Type Reefiqg Notes
73 Deploy SCK - 110 xn, SO0#
7% Man SCK - 60 kn
75 Man TCK Snyder 60 kn
76  Deploy SCK - 130 kn, S00#
77  Deploy TCK - 130 kn, SO0#
78 Man SCK - -
79 Man TCK - -
80 Deploy SCK - 150 kn, 300#
81 Deploy TCK - . 150 km, 300
82 Deploy X 2 sec 150 kn, SO0¥
83 Deploy TCK 6 sec 150 kn, S00#
84 Man TCK . e
85 Deploy TCK - S00f
86 Manual TCK - 160# lost payload
. (release failed)
87 Trim TCK - 100#
88 Manual TCK = 165#
89 = - - No test
90 ‘Manual TCK 6 sec 360 control akay
91 Deploy TCK - 300
92 Manual TCK - 360F rt control cable
tangled
93 Deploy TCK - 300#
94 Manual TCK - 360# 1t control cable
tangled
95 Deploy TCK - 150 kn, SOO#
96 Deploy TCK - 150 km, 500#
97 ° Manual TCK = 60 Xn,36Qf control ¢
98 Manual TCX - 60 Xn, 36QF control o
99 Manual TCK - -
100 Derloy TCK 6 sec + 2 sec 150 km, SOOf
101 Deploy TCK 6+ 2 500#, 150 kn
102  Manual - - Inst, 165 LO kn 1t
control cable tangled
103 Deploy TCK 6+2 S00#, 150 kn
104 Manual TCK 6+ 2 500#,150 kn lost pay-
load (bolt sheared)
105 Man - - -
105 Man - - -
107 Man - - -
108 Manual - Nose tuck Inst, 165 60 kn con-
trol okay
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TABLE VI,

SUMMARY OF PRELIMINARY FLIGHT TESTS
(10 SEPTEMBFR TO 1 NOVEMBER 1968)

Velocity Altitude Payload

No. Flight (Kn) (%t) (Lbs) Notes

101 Trim Lo 2,000 300 -

102 Trim Lo 2,000 - Line tangled

103 Man Lo 11,000 10 -

104 Manual Control 60 5,000 - Lost payload

105 Trim L0 2,000 - -

106 Manual Control Lo 10,000 - Violent drop from aird
craft

107 Trim - 2,000 300 -

108 Manual & Roming - 5,500 500 50! from tar-et

109 Trim - 2,000 300 -

110 Homing - 5,000 - =

111 Trim - 2,000 500 -

112 Homing - 5,000 300 35! from target

113 Homing - 7,000 €00 Receiver battery dead

114 Homing ko 10,000 300 Line tangled

115 Trim 150 2,000 500 -

116 Homing - 7,000 300  Antenna snort - okay
manual

117 Homing - 7,000 300 300' from target

118 Homing 120 10,000 300 39! from target

119 Manual & Homing 120 10,000 500 70* from target on
manual

120 Man = 3,000 160 Reefing broke loose

21 Homing = 7,500 300 117! from tarret

122 Homing - 7,500 500 183 from target

123 Homing Lo 7,000 - Incomplete deployment

2L - - - - -

125 Homing Lo 7,000 500 360' from tarpet,
rt turn cable troken

126 - - - - -

127 Homing &0 9,500 300 110' from target,
2-1/2 mi offset

128 - = - - No test

129 Manual & Homing - 10,000 500 120" from tarret, mand
ual (antemna ooen)

130 Homing Lo 7,L00 300 110' from target, lost
pavload

131 Homing = 7,L00 500 600!, did not get ful-
ly back, lost payload

132 Homing - 10,000 500 35!

133 Homing - 7,000 500 skt (11,000' offset)

134 Homing - 7,000 500 Lost payload
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TABLE VI - Continued

—— e
Velocity Altitude Myload

No, Flight (Kn) (FL) (Lbs) Notes

135 Manual Control - 75000 500 S8t

136 Manual Control - 7,000 500 150*

137 Homing 120 15,000 - Lost payload, strap
broke

138 Homing 110 15,000 - Lost payload

139 Homing Lo ¢,500 - 1261

140 Homing - 10,000 53  Lest payload

141 Homing 170 10, X0 - Tore parawing, control
box destroyed

1L2  Homing - §,000 S} Lost payload, damaped
control box

1L Trim 70 24500 - Loat payload

1L Trim 80 2,500 - -

1S Trim 150 2,500 = ]

W6 Trim 150 2,500 = 3

147 Homing 120 3,000 E Lost payload

148 Homing Lo 6,500 - 120!

19 Homing Lo £ 4500 - Tore wing

150 Trim 70 2,500 - -

151 Trim 70 2,500 - =

152 Trim 70 2,500 - -

153 Trim 150 3,000 - Line twisted

154  Homing 120 10,000 - 700" from target, 3-1/2
mi

155 Homing 120 10,000 - LSO from target

156 Trim 150 3,000 TR

157 Homing 150 10,000 - Anterma not open, line
Ltangled

157a Trim 150 3, 000 - Deployment malfunction

158 Trim - 3,000 - Tore deployment bag

158a Homing 12¢C 10,000 - 200" from target

159 Homing 12¢ 10,000 - No disreef

160 Homing 120 10,000 - Dropped € mi away,
landed 1-1/2 mi

161 Trim 150 15, 000 E Blew wing panel, 35 kn
winds

162  Homing 120 10,000 - No. 6 leading edge line
broke, reefer tore

163 Haming 120 5,000 - Slack control lines

164 Trim 10 2,500 - =

165 Trim Lo 2,500 - =

166 Trim 10 2,500 500 -

167 Homing Lo 74000 - Wing blew up

168 Trim 150 15,000 - Gkay

169 Trim 150 e - Okay
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TABLE VI - Continued

Velocity Altitude Payload

No. Flight (Kn) (Ft) (Lbs) Notes
170 Trim 1%0 3,000 - Pilot chute broke
; loose

171 Homing 150 15,000 300 300t from 3 miles in
cross wind

172 Homing 150 15,000 = Pilot chute & wing
broke

173 Homing 150 15,000 - Manual control, one
antenna gone

17h  Reefing 75 5,000 - Snyder + nose tuck,
okay

175 Reefing 150 L, 000 - Snyder + nose tuck,
okay

176 Reefing 150 L, 500 - Snyder + nose tuck,
okay

177 Ree€ing 150 15,000 - Snyder + nose tuck,
okay

178 Homing 150 15,000 - Control bax destroyed
tangled lines

179 Reefing Lo i, 500 - Snyder + nose tuck,
1950# shock load

180 Reefing Lo li, 500 - Snyder + nose tuck,
2200# shock load

181 Reefing Lo i, 500 = Snyder + nose tuck,
2LOO¥ shock load

182 Reefing 50 3, 500 - Zero reefing line,

3300# shock load




TABLE VII, CONTRCL FLIGHT SUMMARY

Date Flight Remarks

SNV -

9-11-68 0k (5-1)" Payload lost at deployment due to failure to
bridle at the D ring

0-13-68 106 (5-2) Deployment chute hangup on payload
0-16-68 108 (5-3) Automatic home -to-target switched to manual

to protect control bax; wing out of trim;
landing within SO' of target

G¢-17-68 110 (5-4) Wing not quite in trimg &" pull considered
. too great
9.17-68 112 (5-5) Good flight within 35' of transmitter;

automatic homing all the way; descent rate
approximately 19 fps with 300# payload

9-18-68 113 (L-1) Automatic homing good to appraximately 1000’
of target, then turned away from target;
post flight check showed receiver battery
low, 18,2 voltsy descent mte 18 fps with

SOOf paylosd

9-18-68 11 (5-6) Line tangled; system fell off backwani in
tight twist

9-18-68 116 (L-2) Automatic homing did not function; manual
control good; right antenna shorted to case

9-19-68 117 (L-3) Autematic homing to 300! of target

9-19-68 118 (h<) Automatic homing to within 39' of transmitter,

with 300# payload; descent rate 16 fys

9-18-68 119 (5-7) Right turn in automatic mode, manual control
to 70' of transmitter; flight 15 min from
10,000%; 12 fps descent rate, 300¢ payload

9-20-68 121 (L=5) Good flight; LOO® from target, °5 kn winds,
©  300# payload

9-20-68 122 (5-8) Good flight; 180' frum target

9-25-£8 123 (L-6) Instrumentation, right turn stall




TABLE VII - Continued

Date Flight Remarks
9-25-68 125 (5-9) Static line deployment from H-3k; long and
violent deployment; system homed well without
right control, line broken; approximately 360!
from target
9-26-68 127 (5-10) Good flight to 110! from an altitude of 9500
and 13,000' up windy descent rate approximately
20 fps
9-26-68 129 (4-7) System did not automatically home, antenna
open; manual control to 120' ¢Ff tarret
"9-26-68 130 (L-8) Lost payload at deployment, homed to target with
' - only the control box; landed within 110
descent rate 6-7 fps
9-27-68 131 (5-11) Autome tic homing to within 600! of the target;
lost payload, high cross winds
9-27-68 13k (5-12) Payload strap broke and wrapped arcund the
. control lines
9-30-68 (L-9) -
9-30-€8 133 (L-10) Homed to Sh'; Fairchild 11,000' offset at
7,000"
9-30-68 135 (L-11) Manual flight for Fairchild 55' from trans-
) mitter, 500# payload
9-30-68 136 (L-12) Manual flight for Fairchilé 150' from trans-
: mitter, So0# payload; displayed good wind
penetration
lO-Ji-68 ’137 (L4=13) Automatic home to 250' -
10-01-68 138 (5-13) Lostpayload, bridle tangled control line |
10-01-68 139 (4-14) Automatic home to 126!
10-02-68 140 (L-15) Quick release malfunction, homes witn control
box
10-03-68 141 (L4-16) Destroyed control box
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TABLE VII - Continued

Date

Flight

Remarks

10-03-68
10-08-€8
10-03-€8
10-03-68

10-11-68

10-10-€8

10-11-€8

10-15-68

10-16-68

10-16-68

| 10-17-€8
10-18-£8

12 (5-14)
17 (La-17)
18 (5-15) .
U9 (5-15)

15 (La-18)
155 (5a-16)

157 (5a-17)

158 (La-20)

159 (La-21)

160 (£a-21)

162 (La-22)
163 (L-23) .

Damaged control box
Lost payload,’homes with just control bax
Automatic home, 120!

Fieid repack; wing ripped in half; descent
rate 72 fps

Drooped at 20,000 offset at 10,0C0' altitude

Deployed at 10,000' and 120 kn, 4 mi up wind
from target, a few right turns at deployment;
the homing alignment was within an angle of
+15%; packaged loss carrier discomnected,
came straight to target; when within 200' of
target at appraximately 1000', it went into a
right turn stall; package damaged upon impact

Line tangled during deployment, could not
control

Deployed 10,000' at 120 kn, L~1/2 mi from tar-
get; homed to target, passed over the XMIR
turn at approximately 250' and made a gentle
turn into wind; load landing was very gentle
upon release of load; control package damaged
upon landing

Parawing did not deploy; deplovment reefer tied

of f with 550 cord

Parawing flew well as reported by helicopter
crew; C-130 drop at least 8 mi from target
or 3 mi beyond the selected release point
at 10,000'; package fell 1,5 mi short of
target

Wing torn apart; tape held the antenna closed
Slack control lines; lost carrier could not

overcome slack; good deployment and stable
flight E
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TABLE VII - Continued

Date

Flight

Remarks

10-22-68

10-2-68

10-25-68

10-25-68

10-30-68

167 (La-2k)

171 (5a-19)

172 (3-1)

173 (5a-20)

178 (3=2)

The wing was destroyed at deployment; the con-
trol system was a total loss

Deployed at 15,000' at 150 kn with 300# payload,
3 mi from target and cross wind; good flight;
came over the target and landed within 300';
attempt was made to measure turning radius for
2-1/2" pull-in with T.V. coverage

Deployed at 15,000'at 150 kn; the deployment
chute separated without retracting the deploy-
ment bag; wing worked its way out of the bag
at appraximately 5000'; the wing tore up, the
streamer and sandy area saved the package

Deployed at 15,000' at 150 kn; no automatic
control, package found with one antenna missing;
assumed lost at deployment; wing operated with
a built-in left turn; it appeared that the
degree of left turn could be controlled manually

Retainer strap used to hold the parawing to the
control box was tangled in the control lines;
control tox was destroyed

'(S-l): The first number is the control system S/N; the second number
is the flight number on that comtrol box,

Example: (L-3) indicates third flight with control box S/N L.
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TABLE VITI., PERFGRMANCE CALCUIATIONS -
PARAWING SYSTEM WITH DROGUE
Time Total Altitude Loss
(Sec) Altitude Loss (Ft)
0 Launch
20! free fall, drogue riser pays out
1.12 Drogue Inflated 20
124! drogue operation
3.12 Deploy Parawing 1k
79! wing line stretch
3.60 Wing Reefed 223
210!
5.6 Initiate Disreefing L33
ol
70 Wing at Terminal Velocity 510
_
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CACS TEST OBJECTIVES FOR TABLES X AND XI

Performance Data Oriented Test Ob jectives

de

b.

Ce

de

me

Turn rate, roll angle, and turn diame'er versus control cable
pull-in and total suspended weight

Determine control line forces versus control cable pull-inand
total suspended weight

Automatic homing turn angle versus co~trol cable pull-in and
total suspended weight

Automatic homing duty cycle versus control cable pull-in and
total suspended weight

Proportional homing capability - Measure the receiver propor-
tional outputs differential signal versus time to determine
the system improvement and proportional time constants

Determine time constants of lost subcarrier to automatic
haming turns

Determine time constants of lost subcarrier to command turns
Determine the effects of payload size

Determine characteristics of transmitter cine of silence
Determine the effects of depression angles (26 to 90 degrees)
Evaluate the apparent constant right turn over target
Determine command homing capability

Determine automatic homing capability

Contract Performance Oriented Test Ol jectives

1.

2.
3.
b,
5.

300- and 500-pound payload with no rigging changes (100 to 500
design goal)

L/D of 1.8 to 1 (2, to 1 design goal)
500- to 30,000-foot operation
0- to 150-knot operation

100-foot turn radius capability
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6. 100-foot radius landing with command control

7. Vertical descent rate at impact of 25 feet per second or less
8. Mission duration

9. .automatic homing battery life of L5 minutes

10. Design goal of 200 feet CEP with 15-knot wind in the automatic
homing mode

3
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TABLE XII. INSTRUMENTATION TEST SETUPS AND DATA ITEMS

Channel Data
Test 1 Front suspension tie point load
Setup
No. 1 3 Aft suspension tie point load
S Left suspension tie point load
7 Right suspension tie point load
9 Vertical axis acceleration
Test 1 Servo amplifier input signal
Setup
No. 2 3 Servo actuator feedback signal
5 Left control line loading
7 Right control line loading
9 Receiver proportional differential signal
13 Receiver AGC voltage
11 PAM (Pulse Amplitude Modulation - sampled signals)

1 Command right turn relay K1

2 Command left turn relay K2

3 Lost subcarrier relay K3

i Receiver battery voltage

S Servo battery voltage

6 Regulated power voltage (22 VDC)
7 Accelerometer (either axis)

8 Spare

9 Lost subcarrier relay K3

10 *. Suspension load

11 Suspensiopn load

12 Suspensidh load

13 Suspension load

1} Spare \

15 Lost subcg‘rler relay K3

16 Instrumenfation regulated power voltage (5 VDC)

Marker instrumentation battery voltage
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